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Abstract. It i s  argued that the method introduced recently by Wang to quantise the damped 
harmonic oscillator is untenable because it does not reproduce the standard results for the 
quanrum oscillator in the limit of arbitrarily small damping. The method is also shown to 
be inconsistent if the friction coefficient is allowed to take any positive value. Furthermore, 
it is established that no moving wavepacket can be constructed within Wang’s formalism. 

1. Introduction 

The phenomenological quantisation of dissipative systems is still being investigated 
from several different points of view. The canonical quantisation based on Bateman’s 
time-dependent Lagrangian (Bateman 1931, Kanai 1948) has been criticised as actually 
referring to a variable-mass system (Greenberger 1979a, Ray 1979). Other suggestions 
then followed to attack the problem such as taking the mass as a dynamical variable 
(Greenberger 1979b), or introducing nonlinear Schrodinger equations (Kostin 1972, 
Hasse 1975, Skagerstam 1977, Stocker and Albrecht 1979, Schuch et al 1983, 1984, 
Briil and Lange 1984). The inclusion of an external stochastic force has been studied, 
chiefly to overcome certain difficulties engendered by Bateman’s Lagrangian (Svin’in 
1976, Messer 1979), while the exploitation of the quantum Liouville equation has also 
been tried (Brinati and Mizrahi 1980). Since the variety of approaches is quite broad, 
the reader is referred to Dekker’s review (Dekker 1981), where an extensive survey of 
the literature can be found. As to the phenomenologicai canonical quantisation of 
dissipative (more generally, non-conservative) systems, however, it has been repeatedly 
shown to be impossible or ambiguous (Brittin 1950, Havas 1956, Messer 1978, Edwards 
1979, Lemos 1981a, b). The results of Brittin (1950) are partially corrected in Lemos 
(1981a). 

The great importance of constrained Hamiltonian systems is witnessed by their 
occurrence in the modern attempts to describe the fundamental interactions of elemen- 
tary particles. The canonical formulation of gauge and string theories, for instance, 
leads naturally to constraints, and Dirac’s formalism (Dirac 1964, Sundermeyer 1982) 
to deal with them is usually invoked. Sometimes it is useful to introduce artificial 
constraints into certain systems with the intention of bringing forth new symmetries 
that may simplify the analysis of the dynamics of such systems. This is customarily 
done at the cost of an enlargement of the phase space of the system through additional 
degrees of freedom that are eventually eliminated. Recently, a new treatment (Wang 
1987) of the damped harmonic oscillator has been put forward, regarding it to be a 
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constrained system described by a constrained generalised Hamiltonian. To our knowl- 
edge, this is the first attempt so far to construct a constrained Hamiltonian model for 
the description of a dissipative system at the quantum level. Instead of artificially 
enlarging the phase space, Wang introduces constraints in the ordinary phase space 
in such a way that the state vector has to satisfy a nonlinear subsidiary condition, in 
addition to a linear Schrodinger equation. 

What we undertake to show in the present paper is that Wang’s theory is untenable 
on physical grounds, particularly because it does not reproduce the standard results 
for the quantum oscillator in the limit of vanishing friction coefficient. We also adduce 
some general arguments to the effect that any theory constructed along the lines 
suggested by Wang is bound to fail. Finally, in the appendix it is pointed out that no 
moving wavepacket can exist in Wang’s theory, and this constitutes a further strong 
reason against its viability. 

2. A proposed constrained dynamics for the quantised damped harmonic oscillator 

In a recent paper, Wang (1987) proposed a new and ingenious method to quantise 
the damped harmonic oscillator by considering the equation of motion 

x + y l  + w 2 x  = 0 ( 1 )  

as arising from a constrained Hamiltonian system in the bidimensional phase space 
(x, p ) .  His classical treatment introduces a first-class constraint in phase space. 
According to Dirac’s theory of constrained systems, in the quantised theory the 
first-class constraints must be imposed as supplemeniary conditions on the physical 
state belonging to the Hilbert space %‘= L2(R). Let Ho be the Hamiltonian operator 
of a harmonic oscillator of frequency w,  that is, 

where x  ̂ and 8 are self-adjoint operators obeying the usual canonical commutation 
relations. Then Wang’s supplementary condition (3.17) on the wavefunction becomes 

In addition, CC, obeys a linear Schrodinger equation 

where the explicit form of the Hamiltonian operator A will be irrelevant for our 
purposes. 

To our knowledge, all phenomenological quantum models of the damped harmonic 
oscillator enjoy the natural property that as y + 0 any state vector $, reduces to a state 
vector of the undamped oscillator. This is assumed by Wang himself in so far as 
he considers the case of small damping, with S = y / ( w 2  - ~ * / 4 ) ~ ’ ~ < <  1, and makes use 
of a perturbative approximation method by expanding the Hamiltonian operator and 
the wavefunction in powers of the small parameter 6. To the first order in 8 one should 
have [see Wang’s equation (3.5)] 

* = +o+ S*I *o, *1 E ( 5 )  
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where $o obeys the Schrodinger equation 

W O  A ih-= HOG,. 
a t  

In other words, $o is a state vector of the undamped oscillator. 
Therefore, not being aware of any convincing argument to the contrary, we shall 

adopt the natural point of view that any admissible quantum theory of the damped 
harmonic oscillator must reproduce the ordinary theory of the quantum oscillator as 
the friction coefficient y tends to zero. What we intend to prove in the sequel is that 
the quantisation scheme devised by Wang does not meet this requirement, and for this 
reason must be dismissed as unacceptable. As a byproduct of our investigation, it will 
also be shown that Wang’s theory may only be consistent for a restricted set of values 
of the friction coefficient y, and this is a further fatal objection against it. 

3. Inconsistency of the theory 

Let us define the nonlinear operator 6 by 

@+ = $[ln +-fin(+*$)]. (7) 
In order to ascribe a precise meaning to 6, and therefore to equation (3), we shall 
take the principal determination of the logarithm (Markushevich 1970), as this seems 
to be the most natural choice. Thus, with 

I/I = l + l  eie -T<es.rr (8) 

6+ = io+. (9) 

I ( ~ + ) ( x ) I  = lw IW)I ~ iw)i  (10) 

II@*II s ~ll911 (11) 

$(A$) = Ad$ A > O  (12) 

Ijo+ - i h y8+ = 0 

we have 

With such a definition the operator 6 has a few interesting properties, which we now 
explore. From equations (8) and (9) it follows that 

whence 

showing that 6 is a bounded operator. This does not mean that 6 is necessarily 
continuous, because it is not a linear operator. Notice further that 

so that 8 is a positive-homogeneous operator, in spite of its nonlinear character. By 
rewriting equation (3) in the form 

(13) 
the linearity of fro, together with the positive homogeneity of 8, allows us to require 
that any solution I+!J~ E 2 to equation (13) be chosen in such a way that Il$,jl= 1. Since 
the Schrodinger equation (4) conserves probability, we may always regard as normalised 
any simultaneous solution to equations (3) and (4). 

Before going forward to what we want to establish, it is necessary to consider an 
ancillary result. 
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Lemma. Let I$ be any normalised vector of the Hilbert space of states 2. Then 

/I f i o + I 1 2  3 : i i 2w2 .  (14) 

Prooj Let {pn}z=o be the orthonormal basis of 2 made up with the eigenvectors 
cpn of Go, which are such that 

fio(Pn=(n+$)hwcp,. 

It is possible to write 
m 

cC,= C Cnpn cn E c 
n = O  

with 
m 

1 1 + 1 1 2 =  C ICn12=1* 
n = O  

Therefore, 
cc 

go+= C,(n+4)hwcpn 
n=O 

so that 

and the proof is complete. 
We are now prepared to state and prove our main results, 

Theorem. Let &E X be a normalised state vector of the usual harmonic oscillator. 
Then there exists no solution I& E 2t to Wang's equations (4) and (13) such that $, + 

as y+O. 

Prooj As we have previously remarked, any solution +, E 2 t o  equations (4) and (13) 
can be taken to be normalised. Accordingly, let us assume that l I~,l/ = 1 and rewrite 
equation (13) in the form 

This equation combined with equation (1 1) leads to 

Having recourse to the lemma we conclude that 

This contradicts the assumption that 3, is normalised and, moreover, shows that Jlv 
does not converge to an element of 2%' as y +  0. The proof is complete. 
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Corollary. There exists no non-trivial solution to equation (13) in 2 if y < w / 2 n  

Prooj Let 4, E 2 be a non-trivial solution (not necessarily normalised) to equation 
(13). From equations (21), (19) and (17) it follows at once that 

hence 

y a w/27r. (24)  
This restriction on the allowed values of y implies the rejection of Wang's theory 

as unphysicai, and characterises as meaningless the perturbative approximation scheme 
employed in his paper, since it presupposes the validity of the model for y / w  arbitrarily 
small. 

The following remarks concerning the above results are in order. The theorem 
retains its validity if some other branch of the logarithm is chosen, whereas the bound 
on y expressed in the corollary is lowered. It is clear that our method of proof allows 
us to infer a lower positive bound on y only when a particular choice of branch of 
In z is made. Even if different branches of the logarithmic function are selected for 
various values of x to make the phase e(x) continuous, the only reasonable limit of 
the constraint equation ( 3 )  seems to be &$ = 0, which entails 4 = 0. This reasoning, 
that, of course, is not meant to be rigorous, suggests that quite generally the constraint 
introduced by Wang prevents his theory from having an acceptable limit as the friction 
coefficient tends to zero. 

In the appendix it is further shown in full generality that the constraint equation 
( 3 )  is not compatible with the existence of moving wavepackets. We believe that this 
is another strong reason to regard Wang's theory as physically unacceptable. 

4. Conclusion 

For one-dimensional non-conservative systems it is not difficult to understand why 
any attempt along the lines suggested by Wang will inevitably fail. If one insists that 
one is dealing with a genuine Hamiltonian system, although constrained, it must be 
possible to solve the constraint equations and go over to a reduced phase space (x*, p * )  
endowed with a Hamiltonian H * ( x * ,  p " )  and where there are no constraints. Making 
use of the path-integral quantisation method, for instance, the formula for the propa- 
gator in the reduced phase space can be expressed in terms of the original phase space 
at the expense of a modification of the integration measure (Faddeev 1969). In any 
case, if the original phase space has dimension 2N, the reduced one has at most 
dimension 2 N - 2, if there is only one first-class constraint. The situation considered 
by Wang corresponds to N = 1, and in the most favourable circumstances one would 
end up with a zero-dimensional phase space. Of course, even at the classical level such 
a theory is devoid of physical content. 
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Appendix: The non-existence of moving wavepackets 

By making use of equations (2) and (9) the constraint equation (3) can be written in 
the form 

h2 a2$ m a 2  
2m ax2  2 

-- -+- x2$ + hy0* = 0. 

Let us put I) = U + i V, where U and V are real functions. By taking real and imaginary 
parts of equation (Al)  we readily obtain the following equations: 

h2  a2u mu2x2  
2m ax2 2 

h2  a2v mwzx2 
2m ax2 2 

-+- U +  hy0U = 0 

-- -+- v+ hy0V = 0. 

-- 

We now take the product of equation (A2) by V, of equation (A3) by U and subtract 
the resulting equations, obtaining 

a2u a2v v-- U-=o. 
ax2 ax2 

This last result is equivalent to 

whence 

au av 
dX ax 

v-- U-= a ( t )  

where a ( t )  is an arbitrary function. If $ is to be square integrable, both functions Lr 
and V (and their derivatives) must vanish as 1x1 +CO. Then we conclude that CY = 0 and 
are led to 

au av v-= U -  
ax ax 

whose solution is immediate: 

v =  P ( t )  U 

where P (  t )  is an arbitrary real function. 
From equation (A8) it follows that the wavefunction $ takes the form 

tC,=t(t)U &( t )  = 1 + ip( t) .  (A91 
As a consequence, the mean value of the linear momentum is given by 

( p ) ,  = I O 3  $*( -ih9) dx = -ih1&( t)12 O3 U - au dx 
--io ax I -E ax 

= - i f i l f ( t ) l ’ [ f~‘ ] :~?~= o (‘410) 
by virtue of the boundary conditions satisfied by U at x = *W. Therefore, any conceiv- 
able wavepacket in Wang’s theory has vanishing expectation value of its linear momen- 
tum or, in other words, moving wavepackets are forbidden. 
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